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A constructive procedure is proposed for constructing equations of perturbed motion convenient for investigating the orbital 
stability of periodic motion in an autonomous Hamiltonian system with two degrees of freedom. An algorithm for normalizing 
these equations is described, and formulae for evaluating the coefficients of the normal form are presented. The results are used 
to investigate the stability of motion in certain special cases of the regular Grioli precession of a heavy rigid body with one fixed 
point. @ 2003 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider a system with two degrees of freedom whose motion is described by equations 

dqi 3 H  dpi ~H i=1,2  (1.1) 
dt OPi ' dt Oqi ' 

where the Hamiltonian H is independent of the time t. 
Let us assume that the system admits of a periodic motion 

qi = f/(t), Pi = gi(t),  i = 1, 2 (1.2) 

Without loss of generality, we may assume that the period is 2n. We shall also assume that the 
Hamiltonian is analytic in the neighbourhood of the trajectory corresponding to the periodic motion. 

To investigate the motions of the system near the periodic motion, it is convenient to introduce 
canonically conjugate variables ~/., ~i (i = 1, 2), in such a way that the unperturbed motion (1.2) may 
be written as 

~] (t) = t + ~l (0), rll = ~2 = 112 = 0 (1.3) 

and the Hamiltonian is 2n-periodic in ~l. 
The existence of such variables has long been known [1, 2], but their actual construction in specific 

problems of dynamics may prove to be an extremely complicated task. 
This problem is comparatively easy to solve (see, e.g. [3-5]) if the Hamiltonian of system (1.1) can 

be written in the form 

H = HO)(q], p l ) +  H(2)(q], q2, Pl, P2) (1.4) 

where the function/_/(2) is expressible in the form of a series in powers of q2 and P2 beginning with 
terms of degree at least two. System (1.1) with Hamiltonian (1.4) has a family of solutions for which 
q2 = P2 = 0, and the variablespt and ql are described by equations corresponding to a system with one 
degree of freedom having the Hamiltonian H 0). 

In domains of the phase space q l , P i  where the motions of the system have the periodicity property 
we introduce action-angle variables I and w. The periodic motion is expressed in variables I and w as 

w = CO( Io )t + w o, l = l o 

where co(/) = dhO)/dl ,  h (1) being the Hamiltonian/1 (1) expressed in terms o f / a n d  w. For a 2n-periodic 
motion, co(I0) = 1. If we put 

~ = w, rll = l -  lo, ~2=q2, 112=P2 
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the periodic motion of the original system with Hamiltonian (1.4) is written in the form (1.3), and 
Hamiltonian (1.4) expressed in terms of variables ~ and i]i will be 2r~-periodic with respect to ~. and 
analytic in ~2, rh and rh. 

The aim of this paper is to derive a method for constructing the variables ~. and rli for the general 
case, when the Hamiltonian of the system does not possess the structure (1.4), and also to develop a 
constructive algorithm for normalizing the Hamiltonian of the perturbed motion. As an example, we 
shall investigate the stability of the regular Grioli precession of a rigid body with a fixed point in a uniform 
gravitational field, in a few special cases. 

2. DERIVATION OF THE HAMILTONIAN OF PERTURBED MOTION 

The variables ~ and rli will be introduced using a canonical univalent transformation qi, Pi -'--) ~ ,  ~i. In 
so doing we shall confine our attention to the class of transformations that are linear in the variables 
~2, ~1 and rh characterizing the deviation of the perturbed trajectories of system (1.1) from the 
trajectories of the unperturbed periodic motion (1.2). We set 

qi = fi(~i ) +ail (~i)~2 + ai2 (~l)rll + ai3(~l)rl2 

Pi = gi(~l)  + bll (El)~2 + hi2 (~l)rl| + hi3 (~1)TI2 ; i = 1, 2 

(2.1) 

where f,. and gi are the functions of (1.2), and a O and b 0. (i = 1, 2; j = 1, 2, 3) are unknown 2n-periodic 
functions of ~1, to be chosen in such a way that transformation (2.1) is canonical univalent. 

Let S = S(~1, ~2,Pl,P2) be the generating function of transformation (2.1). The relation between the 
old variables and the new is given by the equalities 

bS 3S 
q i = ~ p  i ,  ~ i = ~ i  i ,  i=1,2 (2.2) 

Since the substitution (2.1) is linear with respect to  ~2, ~]1 and 112 , the generating function must be a 
second-degree function in these variables, in which the coefficients of the second-degree terms are 
constants. Let us write the function S as 

S = c I ~  2 + C2~2p l + C3~2P2 +C4Pl 2 + C s P l P  2 +C6P~ + Sl% 2 + s2p  I + S3p 2 + Jsod~ , 

where cl, c2 . . . .  , c 6 are constant coefficients and So, sl,  $2, $3 are 2re-periodic functions of ~|. 
Having solved Eqs (2.2) for the variables ql, q2, Pl, Pz and substituted the resulting expressions into 

the left-hand sides of (2.1), we find that 

So = (c4g~ + csg,g2 + c692 ) - f lgl  - f292, s| - c2g  | - c3g 2 

s 2 = f l - 2 C 4 g l - c s g  2, s 3 = f 2 - c s g l - 2 C 6 g  2 

(2.3) 

and the following expressions are found for the coefficients a 0 (~1), bi/(~1) of transformation (2.1) 

1 i+1A-I p • d" Cl c2 2 • all = ( -  ) [e|fi -e3+if~_i - 2(elcs - e4c6  -c3c4)g3_i]  

= 1 i+i -1 p • • a i 2 = - ( - 1 ) i + | A - l e 4 - i ,  ai3 ( - )  ~; ( c s f i - 2 c 2 + 2 i f ~ - i - e 6 g 3 _ i )  

bil = ( -1)  TM A-l(2clf~_i + e|g~ + ee_ig~_i) 

b i 2 = ( - l ) i + l A - l c 4 _ i  , b i 3 = ( - 1 ) i + i A - l (  $ '  , , --J3-i + csgi + 2C8-2193-i) 

(2.4) 

where 
e I = c2c 3 -- 2CLC5, 

e 4 = c~ - 4 q c  a, 

e 2 = c3c 5 - 2c2c6, e3 = c2c 5 - 2c3c 4 

e 5 = c  2 - 4 c l c 6 ,  e 6 - - c  2 _ 4 c 4 c 6  (2.5) 

A = c3 f  [ -  c 2 f  ~ + e3g ~ - e2g ~ 
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The prime denotes differentiation with respect to ~1. 
The change of  variables (2.1) that we have obtained contains six arbitrary constant parameters Cl, 

c2 . . . . .  c6. The choice of these parameters when solving specific problems is governed by the condition 
that the quantity A, defined by the last formula of (2.5), should not vanish for 0 ~< ~1 ~< 2n. 

.Example 1. Suppose one of the phase coordinates in periodic motion (1.2), say ql, is a monotone function of time 
(f l( t)  ~ 0). In that case the transformation qi, Pi --'> ~, ~qi may be obtained by setting c3 = 1 in formulae (2.4) and 
equating the other five parameters ci to zero. Then the change of variables (2.1) will be 

ql =fl(~l), q2 =f2(~1)+~2 

(2.6) 

P~ =g~(~)+(A')-t(Tl~ +g~2  -/P12), P2 =g2(~,)+~12 

Remark. It is not hard to verify that transformation (2.1) can be expressed as a composition of two canonical 
univalent changes of variables. In the first transformation qi, Pi -'> Q,, Pi, we introduce a new coordinate 

QI = c3q l  - c2q2  + e3Pl - e2P2 

The second transformation Qi, Pi ~ ~i, Y~i is analogous to transformation (2.6). 

Example 2. Suppose for the periodic motion (1.2)fl(t) + ge(t) ~ 0. Applying the transformation 

Ql = ql + p2, Q2 = q2 + pl, PI=Pl, P2=P2 

followed by a transformation similar to (2.6), we obtain the following transformation (2.1) 

ql = fl (~1) - n2, q2 = f2 (~l) - (fl "+ g~ )-l [111 - f{~2 - (f2' + g~)'q2 ] 

t71 =gl(~l)+(~'+g2)-Ilrll +g2~2 -(f2+gl)q2], P2 =g2(~l)+TI2 

(2.7) 

In terms of variables ~ and rli, the unperturbed periodic motion (1.2) is written in the form of Eqs (1.3). 
To obtain the Hamiltonian of the perturbed motion F = F(~1, ~2, 11l, rh) from the Hamiltonian H(q l ,  

q2, Pl, P2) of the original system (1.1), the variables of qi and Pi must be replaced by their expressions 
in terms of ~. and "qi as in formulae (2.1). 

The function F may be expanded in a convergent series in powers of 1] 1, ~2 and r12 

r = r2 + r3 + r4  + . . .+  r~ +.. .  (2.8) 

where we have omitted an unimportant additive constant, equal to the value of the Hamiltonian for 
the unperturbed motion (1.2), and 1-'k is a form of degree k in I 111'2, and 1"12, with 

['2 -- 111 +q)2(~2' 112' ~1)' ]"3 ---- ¥1(~2' I]2' ~1)1]1 +q)3(~2' 112' ~!) 

I"4 = Z(~l)~lt 2 + ¥2 (~2, r12, ~l)rll + ~4(~2,112, ~l) 

(2.9) 

where X(~l) is a 2n-periodic function of ~1, (Prn and XFm are forms of degree m in ~2 and 112 whose 
coefficients are 2n-periodic functions of ~1. 

The Hamiltonian (2.8) is convenient for investigating trajectories of system (1.1) close to trajectories 
of the unperturbed periodic motion (1.2) [6]. In particular, the problem of the orbital stability of (1.2) 
is equivalent to the problem of the stability of the system with Hamiltonian (2.8) relative to perturbations 
of rll, ~2 and 112. 

3. N O R M A L I Z A T I O N  OF T H E  H A M I L T O N I A N .  F O R M U L A T I O N  OF 
T H E  C O N D I T I O N S  F O R  O R B I T A L  S T A B I L I T Y  AND I N S T A B I L I T Y  

Corresponding to the linearized equations of perturbed motion we have the Hamiltonian F2, defined 
by the first expression of (2.9). Two multipliers of these equations equal unity; the other two are the 
roots of the equation 
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p2 _ 2ap + 1 = 0 (3.1) 

where 2a = x 1 1 ( 2 7 t )  + x22(2~), and xii(2rO are elements, evaluated at ~1 = 2n, of the matrix X(~l) of 
fundamental solutions (X(0, 0) = E, where E is the 2 x 2 identity matrix) of a linear system whose 
coefficients are 2n-periodic in the independent variable ~1 

d~2 _ ~q>2 drl2 = ~ 2  (3.2) 
d~l ~il2 ' d~l ~ 2  

where ~02 is the part of F2 that is quadratic in ~2 and ~12. 
Normalization of the Hamiltonian (2.8) is achieved differently, depending on the value of a. 
If lal > 1, Eq. (3.1) has one multiplier whose absolute value exceeds unity. Then the unperturbed 

periodic motion is orbitally unstable by Lyapunov's theorem on stability in the first approximation [7]. 
If lal -- 1, Eq. (3.1) has multiple real roots Pl = P2 = 1 (ifa = 1) or Pl = P2 = -1 (ifa = -1). In the 

general position, the matrix X(2r~) cannot be diagonalized and, consequently, the unperturbed periodic 
motion is orbitally unstable in the first approximation. A rigorous solution of the stability problem in 
this case requires and examination of the non-linear equations of the perturbed motion. In a previous 
paper [8] a constructive algorithm for normalizing the Hamiltonian of per turbed motion (2.8) in the 
case I a I = 1 was developed, and also conditions for orbital stability and instability were obtained. The 
normalized Hamiltonian has the form 

H = r  1 + ~Sy~ +k3ox32 +ktox2rl +k4ox ~ +k2ox~rl +koorl 2 +Os (3.3) 

where k,j are constants, and 05, is a series beginning with terms of degree at least five in Irl 11/2, x2 and 
Y2, whose coefficients have period 2n (ffa - 1) or 4n (ira = -1) relative to the coordinate wl corresponding 
to momentum r~. The number fi in (3.3) is i or -1, its actual value being determined when normalizing 
the linear system (3.2). Formulae for the coefficients of the normal form (3.3) were presented in [8]. 

Theorem 1. If the coefficient k3o of the normal form (3.3) does not vanish, or if k3o = 0 but 6k#o < O, 
then the periodic motion is orbitally unstable. 

Theorem 2. If the coefficient k3o of the normal form (3.3) vanishes, but at the same time 6k40 > 0, 
then the periodic motion is orbitally stable. 

Now let lal < 1. In that case the roots of Eq. (3.1) are distinct and of absolute value unity: 
Pl = ei2~, P2 = eq2~, where ~. is a root of the equation 

cos 2nX --- a (3.4) 

In specific problems, the non-uniqueness in the value of g in this equation may often be eliminated 
by considering limiting cases in which the quadratic form q~2 in (2.9) has constant coefficients. In such 
limiting cases, I ~. I will be the frequency of small oscillations and is easily evaluated. Then, taking into 
account that the characteristic exponents are continuous functions of the parameters of the problem, 
one can uniquely determine ~. from Eq. (3.4). 

Normalization of the quadratic part of Hamiltonian (2.8). Suppose the characteristic exponents +_i)~., 
of system (3.2) have been found. Set × = x12 (2n) sin(2r&,), o = sign ×, g = o).,, and make the change 
of variables ~1, ~2, Ill, II2, --+ ul, u2, ol, 02 defined by the formulae 

~, = ul, Ill ---ul + I/2X(u~ +u~)-c~2(nnu 2 +n12v 2, n21u 2 +nmu 2, ~l) 

~2 = nnu2 +nl2v2, Il2 = n21u2 +n2ff2 

(3.5) 

The matrix N(ul) of the coefficients ni/of this transformation is defined by the following equalities 

N = oiX(ul)PQ(u ! ) 

0 I[CO$ ~d,/i -sin ~,Ul~ 
P = ~  c-'~ Q=,sinT~u I eOSXU|, 

01 = sign(sin 2nX.), c = x:2 (2r0 1 x I -I t 2, d = (cos 2xX - x ! 1 (2"/~)) I '~ I -I IX 
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Transformation (3.5) is canonical, univalent and 2n-periodic in uv After making replacement (3.5) one 
can write Hamiltonian (2.8) in the form 

F =  F 2 + F3 + F4 + . . .+  Fk +. . .  (3.6) 

F 2 =v I +~,(u~ +v22), F 3 =A(u2,u2, ul)Ul +A(u2,u2,Ul) 

F 4 = X(Ul)V? +f2(u2,v2, Ul)U l +f4(u2,v 2,ul) 

where fk is a form of degree k in u 2 and o2 whose coefficients are 27t-periodic functions of ul 

fk = fvu(ul)u2u z 
v+l.t=k 

Derivation of the normal form up to terms of degree four inclusive. The terms of the third and fourth 
degree in Hamiltonian (3.6) will be normalized by the Deprit-Hori method [9, 10]. A canonical 
normalizing transformation Ul, ol, u2, o2 ~ Wh rl, q2, P2 can be obtained close to the identical 
transformation 

ut = W l +  .... Ul = r l +  .... u2 = q 2 +  .... u2 = p 2 + . . .  

where the dots stand for convergent series in powers ofrl ,  q2 andp2 whose coefficients are 2x-periodic 
functions of w 1. 

The normal form of the Hamiltonian will be different, depending on whether there is resonance of 
order 3 or 4 (i.e. whether one of the quantities 3), or 4~, is an integer k) or whether there is no such 
resonance. 

Without dwelling on the rather cumbersome calculations, we shall present the final form of the 
formulae necessary to compute the normal form. We introduce the notation 

~lO(Ul)=2flO, Yl0(ul)=2fol, ~30(Ul)----f03--f21 

Y30(Ul)= f30-  fl2 , 821(Ul)=-(3f03+f21), Y21(ul)=3f30+f12 

lvtt = 1 7 [Sv~t (t) COS(V - ~t)~ - Yvg (t) sin(v - ~t)~]dt 
40  

I ul 
5 [Sv~ (t)sin(v - ~t)~t + y ~  (t)cos(v - bt)kt]dt mvlt ='4"0 

rv~ = 21vtt ( u j ) + mv~ (21t)ctg[(v - I.t)nk] - lvtt(2n) 

s~  = 2mvtt (u t ) -  1~ (27t)ctg[(v - ~t)g~,] - m~  (21t) 

uv~ = ~ [rv~ cos(v - I.t)ku I + sv~ sin(v - I.t)ku I ] 

u ~a = - ~[rv~ sin(v - ~t)Xu i - svt t cos(v - Ix)ku, ] 

d2o = floVlo -folul0, all =-2(f10u21 +f01v21) 

d4o =f lo-3~ 'ul0-3u21,  d04 =fol +32~Ulo-3u21 

If there are no resonances of order 3 and 4, the normalized Hamiltonian is 

n = t i + k r  2 +c20fi 2 + Clltir2 +c02r 2 +05 (3.7) 

In (3.7) (and later) q2 = ~ sin wg, p2 = "~2  cos w2, while 05 is the sum of all terms of degree at least 
five in Irl 1/2, q2 andp2. The constant coefficients cij are evaluated by the formulae 

c20 = (x+d20), clt = (f20 +f02 -fl 2 -fo 2 +821u|0 +¥2b'I0 +all -2Zd20) 

Co2 = ~2 (3f4o + f22 + 3fo4 - kd~ 1 - 9YaoUao + 98300 30 + 

+ 821 (J~l - )LUlo + 3V21 ) - "1(21 (flo + ~" ulO + 3u21 )) 
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The symbol (g) denotes the average of a 2n-periodic function g(ul) over a period. 
Let 

D = c20~, 2 - c I1~ + Co2 (3.8) 

Theorem 3 (Arnol 'd-Moser)  [11]. I f D  ~ 0, the periodic motion is orbitally stable. 
For resonance of order there, 3~. = k, we have the following normal form for the Hamiltonian of 

perturbed motion 

H = r t + 20" 2 + r2 ~ 2  [0~3o sin(3w 2 -/O4'1) + 630 cos(3w2 - kwl)] + 04 (3.9) 

a3o =-'-~"(/i3osinkul +Taoc0sku|), ~3o = (53ocoskul -T3osinkul) 

Theorem 4 [10]. If at least one of the coefficients ~3o or [33o of the Hamiltonian (3.9) does not vanish, 
the periodic motion is orbitally unstable. 

For resonance of order four, 4~. = k, the normal form will be 

H = r I + 2~r 2 + C2orl 2 + cllrlr2 + c02r22 + 

+ r2[Cqo sin(4w2 - kwl) + ~4o COS(4W2 -- kwl )] + 05 (3.10) 

The quantities cij in (3.10) are evaluated like those in the normal form (3.7), but 

a4o = - ~ (a4o sin ku I - ~4o cos ku I ), ~4o = ~ (t~4o cos kul + )~4o sin ku I ) 

a4o = f4o - f22 + f0,l - Y3od4o - 530do4 + 6~(j~0u3o - folP3o)- 3(82,u3o + Y21U3o) 

Z4o = fJ3 - f31 - 53o84o + T3od04 - 6~(fl0v30 + folu30) - 3(521u30 - T21v30) 

Theorem 5 [101. If IDI>  + 13420, the periodic motion is orbitally stable. If the inverse inequality 
holds, the periodic motion is orbitally unstable. 

4. A N A L Y S I S  OF T H E  S T A B I L I T Y  G R I O L I  P R E C E S S I O N  
IN TWO S P E C I A L  CASES 

Let us consider the motion of a rigid body with a fixed point O is a uniform gravitational field. The 
weight of the body is mg and the distance from its centre of gravity to the fixed point is l. Suppose the 
fixed point has been chosen so that 

Jo B~ff~-C=~o A~--L'B-B, 30=0,  A > B > C  (4.1) 

where ko, Yo, ~0 are the coordinates of the centre of gravity in a system of coordinates O~0P020 whose 
axes are the principal axes of inertia of the body for the fixed point, A, B and C being the corresponding 
moments of inertia. Conditions (4.1) mean that the body possesses no dynamic symmetry, while the 
centre of gravity lies on the perpendicular to a circular section of the inertia ellipsoid constructed from 
the fixed point. 

Grioli showed [12] (see also [13-16]) that, if condition (4.1) is satisfied, the body may precess regularly 
about an axis other than the vertical. The angle Z between the axis of precession and the upward vertical 
is uniquely defined by the values of the principal moments of inertia 

x=arc tgb ,  b =  ~ / ( l - eD(Ob-Oc)  
1 - 0  b + 0  c 

where 0b = B/A and 0c = C/A are non-dimensional parameters. In the 0b, 0 c plane, the domain of their 
admissible values (0 < 0c < 0b < 1; 0 b + 0 c > 1) is a right-angled triangle with vertices (1/2, 1/2), 
(1, 1) and (0, 0). 

In Grioli precession, the centre of gravity of the body lies on its spinning axis, and the angle between 
the axes of the fixed and non-fixed avoids is a right angle. The angular velocities of precession and 
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spinning are the same, both equalling a number n that depends solely on the mass geometry of the 
body 

n 2 = mgl 

~(A - B X B -  C)+ (A - B+ c) 2 

The motion of the body corresponding to regular Grioli precession is periodic: in a time 2n/n the 
body returns to its initial orientation in absolute space, and at the same time the angular velocity vector 
takes its initial value. 

The algorithms of Sections 1-3 have been used to solve the problem of the stability of Grioli 
precession. The results will be presented below for two special cases. Incidentally, some questions relating 
to the stability of Grioli precession have been considered before [17-19]. 

We introduce a trihedron Oxyz rigidly attached to the body, obtained from the trihcdron O~0~020 by 
counterclockwise rotation about the O~0 axis through the angle ~ = arctg(~0/20). The Oz axis passes 
through the body's centre of gravity. The orientation of the trihedron Oxyz is defined by the Euler angles 
~t, 0 and cp. To obtain the Hamiltonian, we put 

tp = qt, O = q2, • = q3, P~ = Anpl, Pe = Anp2, Pv = Anp3 

taking the dimensionless quantity x = n(t + to), where to is an arbitrary constant, as the independent 
variable. Without writing down the expressions for the Hamiltonian, it suffices to note that q3 is a cyclic 
coordinate, and that Grioli precession is represented by the following solution of the reduced 
autonomous Hamiltonian system with two degrees of freedom 

bcos'c 
ql = fl (X) = ---2 + X - arctg(b sin x), q2 = f2 (x) = arccos 

Pl = g~ (x) = (1 - 0/, + 0 c)(l - b cos x) (4.2) 

b sin x 
= [1 + 0 c - (I - e b + e c)b cos x] 

pz g2(x) = ~/l+b2sin2 x 

Stability in the case when the axis of  precession is inclined to the vertical at an angle of  re~4. The central 
feature of this case is that in the 06, 0c plane the curve ~ = rd4 divides the domain of admissible parameter 
values into two subdomains, in one of which (Z < rd4) the angle of spin ~0 in the unperturbed motion 
(4.2) increases monotonically 01 > 0), while in the other (Z > r~/4) the derivative/1 may vanish, 
and the angle q~ varies non-monotonically. 

On the curve ~ = re/4, the derivative/1 vanishes at x = 0 and T = 2ft. However, the function/1 + g2 
increases monotonically on the curve ~ = re/4 (calculations show that on this curve/1 + g2 > 0.5 for 
any z). Therefore, by Example 2 in Section 1, the variables ~ and ]]i may be introduced using canonical 
transformation (2.7). 

The part of the curve Z = rd4 lying in the domain of admissible parameter values may be defined by 
a single-valued function 0c = Oc(Oo), with 5/6 < 0b < 1. The stability is investigated for values of 0b in 
the range (5.6, 0.999). To describe the results of the computations, we mark out nine points @i) in that 
range, numbering them in increasing order of the corresponding values 0b (i) of the parameter 0o 

0tb~)=0.86442, 0t02)=0.87402, 0tb3)=0.89662, 0tb4)=0.90810, 0~5)=0.93519 

096) = 0.94849, 097) = 0.97896, 0tbS)=0.97936, 099) = 0.99091 

All the points in the range (5/6, 0.999) except for the six points Q(J) (j = 2, 3, 5, 6, 7, 9) are non- 
resonant: at these points the number k~. is not an integer for k = 1, 2, 3, 4. 

In the range (0(b 5), 0~6)), the coefficient a in Eq. (3.1) satisfies the inequality a < -1. At the 
endpoints of this range, 2), = 3, and the coefficients of the normal form (3.3) are ~i = 1, k30 = 0, k4o = 

-0.00042 at the point Q(5), 8 = -1, and k30 = 0, k40 = -0.00037 at the point 0 (6). 
At the points Q(3)and Q(7) there are third-order resonances 3), = 5 and 3~. = 4, respectively. The 

coefficient 1130 in the normal form (3.9) vanishes, t~30 = -0.12572 at the point @3) and cx30 = -0.04245 
at the point Q(7). 
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At the point Q(2) and Q(9) there are fourth-order resonances 4~. = 7 and 4~. = 5, respectively. The 
coefficient 040 in the normal form (3.10) at these points vanishes, while flA0 and the quantity D defined 
by (3.8) are equal respectively to --0.47388 and -0.14157 at the point Q(Z~, -0.07496 and -0.77175 at the 
point Q(9). 

h~ the range (5/6, 0.999) the number D vanishes at three points: Q(1), 0(4)  and Q(s). 
Based on the material of Section 3 and the results of computations just presented, we reach the follow- 

ing conclusions concerning the orbital stability of Grioli precession for values of the parameters 0b 
and 0c on the curve )6 = ~/4. At the points Q(2), Q(3), Q(5) and 0 (7) and in the range (0(b 5), 0(b6)), the motion 
is orbitally unstable; at the points Q(a), 0(4)  and Q(s), the question of stability remains open, at all other 
points in the range (5/6, 0.999) Grioli precession is orbitally stable. 

The limiting case 0b + 0c = 1. The part of the straight line 0b + 0c = 1 defined by 0.5 <~ 0b <~ 1 is 
part of the boundary of the domain of admissible values of the parameters 0b and 0c. Investigation of 
the limiting case 0b + 0c = 1 may prove useful in analysing the motion of bodies which differ only slightly 
from a plate lying in the principle plane of inertia OP0~0 of the body. 

The investigation was carried out for values of 0b in the closed range [0.5, 0.99]. In this range, the 
function f l  + g2 is positive for all z (computations showed that)~l + g2 > 0.147). The variables ~ and 
vii, as in the case when Z = n/4, may be introduced by using the change of variables (2.7). 

The results of the numerical analysis are as follows. In the range [0.5, 0.99], we mark out three points 
R (i), to which the following values of the parameter correspond: Oh: 0b (1) = 0.74957, 0(~ 2) = 0.75652, 
0b (3) = 0.83902. All points of the range under consideration except R 0) and R (2) are non-~resonant. 

In the range (0~ O, 0(b2)), the quantity a in Eq. (3.1) is greater than unity. At the endpoints R (x) and 
R (2) of that range, ~. = 2, and in the normal form (3.3) we have the following coefficients: 6 = 1, 
k30 = 0, k40 = -0.00018 at the point R 0) and k30 = 0.00008 at the point R (2). The quantity D defined 
by (3.8) vanishes at the point R ~3) but is non-zero at all other points in the range [0.5, 0.99]. 

Based on the material of Section 3, we conclude that in the limiting case 0b + 0~ = 1, for values of 0b 
in the range [0.5, 0.99], Grioli precession is orbitally unstable for 0~ ~) ~< 0 b ~< 0b(2); for 0 b = 0b O) the 
question of stability remains open; for other values of 0b, regular Grioli precession is orbitally stable. 
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